

A Security Domain Model to Assess Software for Exploitable Covert
Channels

Alan B. Shaffer
Naval Postgraduate School
Computer Science Dept.

Monterey, CA, USA
abshaffe@nps.edu

Mikhail Auguston
Naval Postgraduate School
Computer Science Dept.

Monterey, CA, USA
maugusto@nps.edu

Cynthia E. Irvine
Naval Postgraduate School
Computer Science Dept.

Monterey, CA, USA
irvine@nps.edu

Timothy E. Levin
Naval Postgraduate School
Computer Science Dept.

Monterey, CA, USA
levin@nps.edu

Abstract
Covert channels can result in unauthorized information flows
when exploited by malicious software. To address this problem,
we present a precise, formal definition for covert channels, which
relies on control flow dependency tracing through program
execution, and extends Dennings’ and subsequent classic work in
secure information flow [9][40][30]. A formal security Domain
Model (DM) for conducting static analysis of programs to identify
covert channel vulnerabilities is described. The DM is comprised
of an Invariant Model, which defines the generic concepts of
program state, information flow, and covert channel rules; and an
Implementation Model, which specifies the behavior of a target
program. The DM is compiled from a representation of the
program, written in a domain-specific Implementation Modeling
Language (IML), and a specification of the security policy written
in Alloy. The Alloy Analyzer tool is used to perform static
analysis of the DM to automatically detect potential covert
channel vulnerabilities and security policy violations in the target
program.

Categories and Subject Descriptors D.2.4 [Software
Engineering]: Software/Program Verification – assertion
checkers; D.3.1 [Programming Languages]: Formal definitions
and theory – semantics, syntax; D.3.4 [Programming
Languages]: Processors – compilers; D.4.6 [Operating
Systems]: Security and Protection – access controls, information
flow controls.

General Terms Design, Languages, Security, Verification.

Keywords Security domain model, static analysis, automated
program verification, specification language, covert channel,
dynamic slicing.

1. Introduction
Identification of exploitable covert channel vulnerabilities is vital
in the development of systems intended to enforce mandatory
access control policies, and is required for the successful
evaluation of such systems at the highest levels of assurance
[27][5]. This paper presents a precise, formal definition for
various types of covert channels, which depends upon a
representation of control flow dependencies, thus extending
classic work in this area [9][40][30]. A security domain model is
described for formally representing different types of covert

channels, and for conducting static analysis1 of certain program
implementations. This model employs dynamic slicing
techniques to analyze programs for the existence of access control
flaws, where appropriate.

Widely accepted evaluation standards [6][27][5] require that high
assurance secure systems be designed, developed, verified and
tested using rigorous processes and formal methods. This
evaluation process must include demonstration of correct
correspondence between system representations at various levels
of abstraction, e.g., security policy objectives, security
specifications, and program implementation. The Common
Criteria for Information Technology Security Evaluation requires
that systems at EAL-5 or higher2 undergo covert channel analysis
to ensure that the system is capable of enforcing its security policy
in terms of covert as well as overt interactions [5].

Formal security models are often based on concepts of program
secure state and state transitions. High assurance evaluation
standards [6][5] require a formal verification that the state
transitions resulting from program execution preserve the security
properties defined by a policy. The approach described here
analyzes programs for preservation of security properties through
state transitions, and specifically for the existence of covert
channel vulnerabilities. This work advances the concepts of
secure information flow in classic work by Denning and others
[9][40], by describing automated techniques for covert channel
static analysis.

Previous work in developing our approach has demonstrated the
ability to detect overt information flow security violations [33].
The current work progresses toward verification of programs for
the existence of covert channel security vulnerabilities, as well as
overt flaws based on control flow dependencies. Covert channels
are categorized here as storage channels and timing channels.

The Implementation Modeling Language (IML), the first novel
element in this approach, is a language that supports basic
information processing via assignment statements, conditional and
loop statements, read/write statements, file random access, and
access to a system clock. Program implementations represented in
IML are called base programs, and they provide a standardized
notation for conducting static analysis of target programs for
adherence to a security policy.

The second novel element in this work is the definition of a
security Domain Model (DM), represented as an Alloy [1][16]
specification. The DM provides a framework for specifying

1 In this context, static analysis refers to analysis of program code
without actual program execution.
2 EAL-7 is the highest evaluation assurance level.

Copyright 2008 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or affiliate of
the U.S. Government. As such, the Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for Government
purposes only.
PLAS’08 June 7–13, 2008, Tucson, Arizona, USA.
Copyright © 2008 ACM 978-1-59593-936-4/08/06…$5.00.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
A Security Domain Model to Assess Software for Exploitable Covert
Channels

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School ,Center for Information Systems Security
Studies and Research (NPS CISR),Department of Computer
Science,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the ACM SIGPLAN Third Workshop on Programming Languages and Analysis for
Security (PLAS’08), 45-56. Tucson, AZ. ACM Press

14. ABSTRACT
Covert channels can result in unauthorized information flows when exploited by malicious software. To
address this problem, we present a precise, formal definition for covert channels, which relies on control
flow dependency tracing through program execution, and extends Dennings? and subsequent classic work
in secure information flow [9][40][30]. A formal security Domain Model (DM) for conducting static
analysis of programs to identify covert channel vulnerabilities is described. The DM is comprised of an
Invariant Model, which defines the generic concepts of program state, information flow, and covert
channel rules; and an Implementation Model, which specifies the behavior of a target program. The DM is
compiled from a representation of the program, written in a domain-specific Implementation Modeling
Language (IML), and a specification of the security policy written in Alloy. The Alloy Analyzer tool is used
to perform static analysis of the DM to automatically detect potential covert channel vulnerabilities and
security policy violations in the target program.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

program state and state transitions, as well as security-related
concepts such as security policy, information flow, access control,
and covert channel vulnerabilities. Because of decidability issues
associated with modeling arithmetic operations, Alloy by design
supports only a limited representation of integers and basic
arithmetic operations. Since the DM is implemented using Alloy,
it is similarly limited.

Our Security DM is comprised of an Invariant Model, which
defines the generic concepts of program state, information flow,
and security policy; and an Implementation Model, which
specifies the behavior of the base program. A specialized DM-
Compiler was developed to translate a base program in IML into
an Implementation Model, and to integrate it with the Invariant
Model to form a complete DM specification; the DM-Compiler
thus has visibility of the security policy, as implemented in the
Invariant Model. The DM is verified using the Alloy Analyzer,
which identifies execution paths where the security policy rules
are violated.

Whereas many previous security models capture information flow
between objects and subjects, the DM does not explicitly define
an object, but implements this concept through variables. An
access table records sensitivity labels for program variables, as a
means of tracking information flow across state transitions. These
labels indicate the sensitivity of data stored within a variable, and
may change over time as data flows through the system.

The DM captures the concept of information flows with respect to
a system subject for input to and output from an external device or
random access file. The subject is essentially the executor of the
statement, and has a defined access label. The policy rules define
the legal information flows, based on the relationships between
the subject label and the I/O source/destination variable label, e.g.,
in a Write_dev operation, a subject label must dominate a source
variable label, in order for the variable to be successfully accessed
for writing. This requirement might seem counter to the BLP *-
property, however in our approach a Write_dev is modeled as a
flow from a source variable to a target device, with the latter
specified at the level of the subject label.

Section 2 of this paper describes the IML syntax. Section 3
provides background discussion on covert channels, control flow
dependencies, and dynamic program slicing. Section 4 presents
an overview of the DM methodology for modeling a security
policy. Sections 5 and 6 demonstrate analysis of several example
base programs using the DM, and summarize our test results with
these examples. Sections 7 and 8 discuss related previous work,
and planned future work in this research.

2. Implementation Modeling Language (IML)
The Implementation Modeling Language (IML) defines a simple
domain-specific language that presents some of the basic
capabilities and constructs, with respect to security, of high-level
programming languages. Our intent is that IML enables the
specification of relatively simple programs written in some
common programming language, such as Ada, Java, or C++.
While future iterations of IML might handle other more advanced
language features, e.g., concurrency, inheritance, etc., this initial
language description was motivated by a requirement to represent
essential security information flow properties in target program
implementations, balanced by the desire to limit complexity
during experimentation.

2.1 Lexical Concepts
A variable name is an identifier distinct from IML keywords and
Alloy keywords. No variable declarations are required.

The only assumption about values stored in variables is that they
can be compared for equality and inequality (<, =, >, <=, >=
operators) with other variables, or with constants. Variables can
hold integer constants, but the value of a variable can be
interpreted also as a time value (see GetClock below).
Constants are represented by integers: -1, 0, 1, etc.

Statements provided in the IML include capabilities for
assignment to a variable, reading to and writing from a variable,
accessing an I/O device’s flags and a system clock, and basic
control structures. Semicolons separate statements in IML.

2.2 Assignment Statements
Assignment statements propagate access labels from the right-
hand side to the left-hand side of the statement. For the current
model, constants have a Low access label by default.

variable := variable;
variable := constant;

2.3 Device Input/Output Statements
Read_dev and Write_dev statements abstract the input from
and output to an external device at a specific access level. We
make the simplifying assumption that there are two external
devices: one High and one Low; the label (High or Low) indicates
which device. For a Read_dev statement, the variable is
assigned the label of the device that is read from; for a
Write_dev statement, source may be either a variable or a
constant.

Read_dev (label, variable);
Write_dev (label, source);

2.4 File Random Access Statements
The IML abstracts the concept of random access to an indexed
file, where (key, value) pairs are used to store and retrieve
information in a finite-sized repository. This conceptual
repository, referred to as a direct file, can be thought of as a
database or memory file and (for this model) is represented as a
single-level store (i.e., there is no distinction between persistent
and volatile memory).

All subjects in the base program can access a single instance of
the direct file, according to their access label. Initially, all direct
file slots have a Low access label, and can be written to by any
subject. Once a subject has stored a value into a keyed slot using
the PutDirectFile statement, that slot retains the label of the
subject. Subsequently, another (or the same) subject may read
from this direct file slot using the GetDirectFile statement,
only if the subject’s label dominates that of the key slot. A given
key slot can be overwritten an unlimited number of times by a
subject with a higher- or lower-labeled value, so the label of a
given slot may change over time.

The direct file has a limited number of keyed slots, all of which
have empty keys and values at the start of program execution, and
a given slot’s key value is determined when it is first assigned a
key/value pair. The direct file tracks the number of slots that have
been assigned a key, zero at the start of execution and incremented
by one whenever a key slot in the direct file is written to for the

first time. The direct file capacity equates to the number of key
slots that can be allocated in the direct file.

When a PutDirectFile is executed for a given key for the
first time, an available key slot is allocated, the data is stored in
the direct file, and a global Success flag is set to 1; otherwise, if no
key slot is available, the Success flag is set to 0, and no data is
stored. When all available slots have been allocated, the direct
file is considered filled, and a global Full flag is set to 1. The
Success and Full flags are global state variables maintained by the
execution environment, and are internal resources that would not
be directly accessible in a high level language. Their values could
be inferred, however, based on system errors seen by the user, and
we abstract such system errors in the IML by allowing
direct examination of the flags in a base program.

The following statements are provided in the IML for storing and
retrieving values to/from the direct file. The label indicates the
level of the subject performing the operation; the key and source
may be either variables or constants:

GetDirectFile (label, key, variable);
PutDirectFile (label, key, source);

2.5 GetClock Statement
This statement stores the current clock value to a variable:

GetClock (variable);

We model only the time taken by file and external device
accesses, i.e., during Read/Write_dev and
Get/PutDirectFile operations. These statements may cause
the CPU, or some other resource, to be busy such that some action
visible to another subject is delayed with respect to a reference
clock (for simplicity, we model one time source – the system
clock).

The clock value can be compared with other constants and
variables, using the Before operator:

(var1 Before var2)

2.6 Control Statements
A conditional expression is constructed from variables, constants,
flags, and operators =, >, <, >=, <=, Before, not, and, or. A
statement may be any statement or block of statements (a
sequence of statements is enclosed by braces). Two forms of
control statements are provided:

if condition then statement [else statement];

while condition do statement;

In the if-then-else statement, the else block is optional.
The while-do control statement repeats its body as long as the
condition holds true.

The following statement signifies termination of a base program:

Stop;

3. Background
We now discuss here several computer security concepts relevant
to this work.

3.1 Covert Channels
Covert channels use entities other than data objects as a way to
transfer information between system subjects, specifically entities
not intended for information transfer [20][17]. Such channels
allow processes to take advantage of communication channels to
transfer information in a manner that violates a security policy
[11].

An operating system may virtualize a shared physical resource so
that each subject, or equivalence class of subjects, perceives that it
has exclusive access to the resource. A covert channel can result
from the incomplete virtualization of a resource such that some
attribute of the resource remains shared, indirectly.

A common taxonomy of covert channels defines them as being
either storage or timing channels [32]. For both storage and
timing channels the sender and receiver (typically subjects) must
have [17]:

1. Indirect access to an attribute of a shared resource,
which the sender can modify, and the receiver can view.
For example, the shared resource is the CPU, and the
attribute is its “busy” state; or the shared resource is the
disk, and the attribute is the location of the disk arm, or
the attribute is the “full” state.

2. A means to initiate and synchronize their actions. The
sender and receiver need to know when to modify and
observe the attribute, the importance of which increases
when they wish to transmit a stream of data.

In our analysis, we consider that the primary distinction between a
covert storage channel and a covert timing channel is the means
by which the receiver observes the change in the attribute:

3. Storage – the receiver views an error message, or other
information placed in its address space by the system.
E.g., if the disk is full, the receiver is provided an error
message to that effect.

4. Timing – the receiver views changes to the relative
timing of “legal” events. For example, if the sender’s
activity makes the CPU busy, the receiver’s request to
execute an operation on the CPU will complete (event
1) after the expected time of day occurs (event 2); or,
turning to the disk arm attribute, depending on where
the sender has left the arm (e.g., by reading a sector near
the inner or outer edge of the disk), two disk sectors
read by the receiver will occur in a different order
(events 1 and 2).

The attribute in question forms a point of interference [14]
between the subjects. To be the basis for an exploitable covert
channel, the interference must also be contrary to the computer
security policy – i.e., with a mandatory access control (MAC)
policy, the sender’s security level must be higher than the
receiver’s level (with respect to confidentiality) [38]. Thus, the
determination of the potential covert channels in a system depends
not only on the policy in place, but also on the implementation of
that policy on a specific system [11], thus our approach here
considers both the security policy and its implementation.

The criteria listed above enable one or more bits of information to
be passed for each interference event (i.e., log2(n) bits, where n is
the number of possible states that the observer can differentiate in
the shared resource, such as different amounts of delay).

However, if the interference event can be repeated in a cycle, or
loop, a stream of data can be transmitted through the channel,
although additional synchronization between sender and receiver
may be required to do so.

The point of interference of a covert channel is considered an
internal resource of the system, as it is not directly accessible to
subjects, as are exported resources [27]. Note that if a Low
subject can directly view the value of an exported resource (e.g., a
variable) that has been modified by a High subject then an overt
flaw, rather than a covert channel, results.

3.2 Control Flow Dependency Flaws
Covert storage channels based on control flow dependencies often
involve the indirect use of internal resources, such as buffers or
non-exported files in a program control decision, to pass
information from High to Low [20][17][1][10]. In addition to this,
our approach is capable of detecting overt flaws based on control
flow dependencies.

The approach here for discovering flaws based on control
dependencies employs a dynamic slicing analysis. To determine
the existence of such a dependency within the program, the chain
of statements preceding a value assignment is examined with
respect to the access labels of the variables in these statements. If
the context of a previous statement includes variables that are
higher than the destination, then there is an overt flaw.

The code snippet below would not be classified as having a covert
channel since internal attributes are not referenced, however it
provides an illustration of a control flow dependency that
constitutes an overt flaw. In the example, a constant value is
written out to a Low external device (s3), depending on the High
value read into variable v1 (s1).

(s1) Read_dev (High, v1);
(s2) if v1 > 0 then
(s3) Write_dev (Low, 1);

The Low value assignment depends on a High source (v1) in the
if block (s2), therefore an implicit flow from v1 to the Low
device exists [30].

3.3 Dynamic Slicing
Integral to certain covert channels is the notion of data or control
dependency. Slicing algorithms are used as a means of tracing
such dependencies between variables and statements processed
during program execution, traditionally for program debugging
purposes [18]. Slicing algorithms generate an executable subset
of a program, creating a subprogram whose behavior is the same
as the original with respect to some variable. They allow one to
isolate the behavior of, and dependencies acting upon, that
variable.

Slicing algorithms are categorized as either dynamic or static,
depending on whether they take into account dependencies
derived during one particular program execution path (dynamic),
or for all possible execution paths (static). Dynamic slicing
techniques generally analyze only the narrow portion of the code
representing a single execution path.

Since slicing techniques have been shown to be useful in tracking
data and control dependencies, they can also provide a means of
detecting potential overt flaws based on dependencies. As an
example, consider the following code snippet:

(s1) if v3 > 17 then
(s2) v1 := 0;
(s3) else if v4 = 5 then
(s4) v1 := 1;
(s5) else v1 := -1;
(s6) v2 := v1;

In the example, it is fairly clear that v2 depends on v1 (s6).
Static slicing can show that v2 has a dependency on both v3 (s1)
and v4 (s3), since there is a dependency from each of these to v1.
With dynamic slicing, however, not all execution paths will result
in the same control dependencies, e.g., when the conditional
expression in (s1) evaluates to true, the final value of v2 depends
on v3 but not on v4, since (s3) is never executed.

The access labels of variables can be used to determine potential
security violations, based on the dependencies between these
variables. For a finite number of paths within a given scope (see
4.1.1), our tool performs static analysis of the DM by using
dynamic slicing to discard previous states that could not have
contributed to an overt flaw, thus a complete result is obtained
without having to maintain a history of all preceding states.

4. Security Domain Model Methodology
An overview of the Security Domain Model (DM) approach to
program security verification is depicted in Figure 1. The DM
includes the definition of program state and transitions between
states, as well as security rules, specified as Alloy assertions,
representing the generic policy a program must conform to. The
DM is composed of an invariant and a variable section, derived
from the security rules and a target implementation, respectively.

Manually
Extract

Manually
Extract

Page 1

Implementation
(Ada, Java, C++, …)

Security Policy
(natural language)

Base Program
(IML)

Invariant Model
(Alloy)

DM-Compiler
(IML -> Alloy)

Alloy Analyzer

Execution paths
that violate security

properties

Domain Model
(Alloy)

 - Implementation Model
 - Invariant Section

Figure 1. Domain model approach to system security
verification.

While there are numerous model checker tools currently available,
we chose to use the Alloy specification language primarily
because of its ability to represent program language abstractions
simply and explore their semantics with a well-integrated analysis
tool. As Jackson [16] points out, referring to his approach as
“lightweight formal methods,” Alloy models can be easily created
and initially tested early in the development process, and then
incrementally expanded. He states that the goal of Alloy was to
“obtain the benefits of traditional formal methods at lower cost,
without requiring a big initial investment,” presumably in time
and effort [16].

As with traditional model checkers, Alloy deals with finite
models, though it handles them very differently. Model checkers
typically build Kripke structures to represent the states and
transitions of a program execution. Such finite model structures
have limits not easily adjusted by the user during analysis. The
Alloy Analyzer tool, however, affords the ability to easily increase
the depth of analysis for models as they are developed and
expanded. For our approach, Alloy and its Analyzer provide an
ideally suited tool for creating and analyzing target program
abstractions.

In our approach, a base program is an abstraction of a target
program implementation, and is written in IML notation. By
analyzing a model of the program, rather than actual program
code, security verification can focus on elements of information
flow including covert channel analysis, e.g., I/O, access labels,
direct file access, and timing (clock), while ignoring other
program details not pertinent to such analysis.

In the current prototype, translation of the base program from an
implementation is a manual step. Developing a separate compiler
to translate a high-level language program to IML is a difficult
task, beyond the scope of this work. The possibility must be
considered that covert channels existing in the original program
implementation may be lost in the IML representation, and for
now we depend on the knowledge of the manual translator to
avoid this problem.

Security rules, written as Alloy assertions, are derived from the
security policy. Such policies are typically written in natural
language, and extraction of security rules is a manual step in our
approach. As currently implemented, the DM defines security
rules, which have as their basis the Bell & LaPadula security
model [2], i.e., flows from High to Low secrecy levels are not
allowed.

After the base program and Invariant Model with security rules
are defined, the DM-Compiler compiles the base program from
IML into state transition predicates, written in Alloy notation,
creating the DM Implementation Model. The DM-Compiler
combines this with the Invariant Model to complete the DM. The
approach uses the Alloy Analyzer tool [1] for automated
verification of the security rules, defined in the DM as Alloy
assertions, to find execution paths within the DM that might
violate the security policy or create covert channels. In essence, it
creates an interpreter for the specific base program, modeled by
the DM.
4.1 Domain Model Structure
The following provides an outline of the Domain Model structure.

4.1.1 DM Invariant Model
The Invariant Model specifies the conceptual framework of the
DM with the Alloy specification language. This section describes
statement types and structure, program execution state, direct file
structure, and clock signature.

In the Alloy language, all atomic structures are modeled as sets
and relations. Sets are represented as unary relations; scalars are
simply singleton sets. A set or relation declaration can be
constrained using several keywords indicating multiplicity: one
restricts sets to exactly one instance of a type; while lone
restricts them to either zero or one instance; and none refers to
the empty set. The all quantifier must hold for all instances of a
type, and the disj quantifier specifies variables that are
necessarily disjoint from one another.

Alloy provides standard logical operators, e.g., negation (!),
conjunction (&&), disjunction (||), implication (=>), and bi-
implication (<=>). Pairs (type->type) represent binary
relations, and ‘+’ is the set union operator. The override operator
‘++’ examines two sets of pairs and overwrites the pair in the first
set with the second whenever the first elements of the pairs match.
The ‘^’ operator represents transitive closure for binary relations.

The signature (sig) construct in Alloy, roughly synonymous with
the class declaration in object-oriented programming languages,
defines a set of atoms (elements), and any relations between them.
Signatures with the abstract qualifier cannot have their own
instances, and are used only to derive other signatures. For further
details on the Alloy language, see [16].

The signatures below describe program State, the initial state,
and structures for variables and values, which are extended in the
DM-Compiler generated Implementation Model (discussed in
Section 4.1.2). The Dominates signature defines a partial
ordering between access labels. For simplicity, only Low and
High access labels are defined here.

abstract sig Variable{}
abstract sig Value{}
abstract sig AccessLabel{}
one sig High, Low extends AccessLabel{}
one sig Dominates {
 ord: AccessLabel -> AccessLabel
}
{ ord = (High -> Low)

}

The Statement abstract signature captures a single instance of a
given statement. For I/O (Read_dev/Write_dev) and direct file
access statements, the signature defines statement type,
destination, source, key (for direct file only) and
subject_label attributes. The subject_label specifies
the security label of the calling subject for a particular statement;
this label represents the access label of the device, in the case of
I/O statements. For assignment statements, only source and
destination attributes are defined. For conditional
statements, the source attribute defines the set of control
variables used in an if-then-else or while-do statement.
For GetClock statements, only the destination attribute is
defined, while the Stop statement defines no attributes.

abstract sig Statement{
 type: Stmt_type,
 destination: lone Variable,
 source: set Variable + Value,
 key: lone (Variable + Value),
 subject_label: lone AccessLabel }

The Stmt_type abstract signature is extended to include all
statement types that can be used in a base program.

abstract sig Stmt_type {}
one sig Assign, Condition,
 Read_dev, Write_dev,
 PutDirectFile, GetDirectFile,
 GetClock, Stop
extends Stmt_type {}

The DirectFile signature defines key/value pairs
(keyContent) for each of its storage slots, and the current
access label (keyLabel) for each key slot value. The latter is
used to track the label of the current value, to ensure valid flows
during subsequent attempts to access that value, i.e.,
GetDirectFile statements. The element last_written
stores the label of the last subject that wrote to the direct file, and
is used when checking for potential covert storage channels
(discussed in detail later). The signature also defines the direct
file max_slots (set to 2 for modeling purposes); note that Alloy
provides the predefined type Int to represent sets of integer
atoms. Also, full and success are used as internal resource
system flags, as previously described in Section 2.4.

sig DirectFile{
 keyContent: Value -> lone Value,
 keyLabel: Value -> lone AccessLabel,
 last_written: lone AccessLabel,
 max_slots: Int,
 full: (const0 + const1),
 success: (const0 + const1)
}
{ max_slots = 2 }

The Clock signature provides an abstraction for program
execution time. The signature defines the concept of some event
occurring at some time before another event (before relation),
which enables testing for the relative timing of events during base
program analysis. In this implementation, ‘TO’ is defined as a
Time ordering instance, using the Alloy library utility for
ordering. The nexts function returns a set of all next values in
an ordering – in this case the next Time values after the one in
question. For example, the code below checks whether t2 is
contained within the set of time values that occur after t1.

sig Time{}
one sig Clock{
 before: Time->Time
}
{all disj t1, t2: Time |
 (t1->t2) in before <=> t2 in TO/nexts[t1]}

The State signature captures the current state of the system, and
the next statement (stmt) to be executed.

sig State{
 stmt: Statement,
 vars: Variable-> one (Value + Time),

 access_label: Variable-> one AccessLabel,
 direct_file: DirectFile,
 current_clock: Time,
 prev_state: lone State,
 last_cond_checked: set State,
 influenced_by: Variable -> State }

The State sig includes the current type of statement being
executed, the current table of variable values, the access label for
each value stored in vars (for information flow tracing), and a
snapshot of the current direct file; the flags full and success
are contained within the direct_file attribute. This signature
also includes the current_clock value, the previous state
leading to the current state, and last_cond_checked, which
identifies a set of conditionals within which the current statement
may be nested, enabling dependencies from those conditionals to
be propagated.

The influenced_by attribute is used for tracking control flow
dependencies, and is at the heart of the dynamic slicing algorithm
used in this approach. It stores, for each source variable in the
current state, all of the previous states that have influenced that
variable. This attribute enables the Alloy Analyzer to narrow its
focus in examining previous states, thus reducing the search space
necessary in determining control dependencies. By storing
variable/state pairs, we can enable the Analyzer to examine all
variable access labels from previous influencing states.

When analyzing a base program, the Alloy Analyzer performs an
exhaustive search of all paths up to a defined length (the scope,
specifying the size of the models considered). In fact, it performs
symbolic execution of all base program paths with length up to the
given scope limit. In our generated DM, the scope is generated
heuristically, based on the total number of statements in the base
program. This ensures that all execution paths of that length or
less will be scrutinized. It is assumed that the Alloy small scope
hypothesis, which states that most flaws in models can be revealed
on small instances [16], holds for information flow tracing in our
approach.

The Invariant Model includes the definition of security rules that
must be enforced by the DM security policy. These rules are
specified as Alloy assertions, and will be described further in
Section 5.

4.1.2 DM Implementation Model.
The Implementation Model of the DM is automatically generated
by the DM-Compiler from a base program, and specifies the base
program’s semantics in terms of statement signatures and state
transitions. Example base programs, and their resultant compiled
Alloy models, are presented in Section 5.

From the base program, the DM-Compiler generates Variable
and Value signatures. The number and value of constants
defined in the signature depend on the number and value of
unique constants explicitly present in the base program (the
constant 0 will always be added by default for initial variable
values); similarly, the variable signatures reflect the variables used
in the base program. To represent the state space, additional
constants may be needed to fill the intervals between explicitly
defined constants. The DM-Compiler defines an Alloy signature
that establishes a simple less than relationship between the
required constant values, thus enabling the base program to
compare values for equality and inequality. Some examples are:

one sig x1
 extends Variable {}
one sig const_minus_1, const0,
 const1, const2, const3
 extends Value {}

one sig LT {
 lt: Value -> Value }
{ lt = ^(
 (const_minus_1 -> const0)
 + (const0 -> const1)
 + (const1 -> const2)
 + (const2 -> const3)) }

The DM-Compiler compiles each base program statement into a
separate Alloy signature, based on the type of statement and
associated variables and constants used. Elements of the
Statement signature not needed for a particular statement type
are not initialized. The base program example below implies a
signature sequence that would be compiled from an assignment
statement (s2) nested within a conditional statement (s1):
-- Base Program statements

(s1) if (x1 < 0) then
(s2) x2 := x1;
(s3) Stop;

-- DM-Compiler-generated Alloy signatures

one sig s1 extends Statement {}
{ type = Condition
 source = x1
 destination = none
 key = none }

one sig s2 extends Statement {}
{ type = Assign
 source = x1
 destination = x2
 key = none }

one sig s3 extends Statement {}
{ type = Stop
 source = none
 destination = none
 key = none }

From these statement signatures, the DM-Compiler generates a
transition predicate representing the state transition trace for the
base program execution. The transition predicate captures the
semantics of the base program by specifying all possible
sequences of statement executions for the program. It also
implements dependency tracking within the execution path.
Although we refer generally to the transition “predicate,” we
actually represent this structure using an Alloy fact rather than a
predicate (pred). Although both define Alloy constraints, a
pred only holds when invoked, while a fact is assumed to
always hold.

The remainder of this section shows a representation of the state
transition predicate derived by the DM-Compiler for the base
program above. Note that for each statement, pre represents a
state before its statement (stmt) has been executed, and post
represents the state after statement execution.

fact trans {
 all post: State - InitialState |
 some pre: State |

For the conditional statement (s1), since no variable value
assignments are made, the variable table, access labels, direct file
(including system flags), clock time value, and influence_by
table remain the same after execution:

(pre.stmt = s1 &&
 (post.vars = pre.vars &&
 post.access_label = pre.access_label &&
 post.direct_file = pre.direct_file &&
 post.current_clock = pre.current_clock &&
 post.influenced_by = pre.influenced_by &&

The last_cond_checked attribute is calculated to include all
previous states currently in last_cond_checked (excluding
the current state, s1), plus the pre state itself, in order to set the
context of statements within the conditional:

 post.last_cond_checked =
 {cond: pre.last_cond_checked |
 cond.stmt != s1 } + pre &&

Based on the outcome of the conditional check, the next statement
to execute is set to either the “then” branch (s2), or the “else”
branch (s3) statement:

 (((pre.vars[x1]-> const0) in LT.lt)
 => post.stmt = s2
 else post.stmt = s3)
)
 && post.prev_state = pre
) ||

In the assignment statement (s2), the access label and value for the
target variable (x2) are set to those of the source variable (x1):

(pre.stmt = s2 &&
 (post.vars = pre.vars
 ++ (x2 -> pre.vars[x1]) &&
 post.access_label = pre.access_label
 ++ (x2-> pre.access_label[x1]) &&
 post.stmt = s3 &&

The direct file (including system flags), clock value, and
last_cond_checked attribute all remain the same after
execution of an assignment:

 post.direct_file = pre.direct_file &&
 post.current_clock = pre.current_clock &&
 post.last_cond_checked =
 pre.last_cond_checked &&

The influenced_by attribute is calculated based on the source
variable dependencies. Recall that influenced_by is declared
within the State sig as the relation (Variable->State), which is a
set of pairings from variables to states. Alloy treats sets and
subsets the same when defining relations, thus the pairing of a
variable to a set of states (Variable->{State}), shown below,
denotes a set of pairings from that variable to each of the states
({Variable->State}). See Section 3.2.2 of [16] for a full
discussion of Alloy’s treatment of sets as relations.

In calculating influenced_by, first all previously recorded
dependencies (other than those for x2, the destination variable)
are included:

 post.influenced_by =
 {v: Variable, s: State |
 (v -> s) in pre.influenced_by &&
 v != x2 }

Second, dependencies for x1, the current assignment statement
source variable, are added as dependencies for x2:

 + (x2 -> pre.influenced_by [x1])

Next, from the current set of states defined in
last_cond_checked, those whose scope this assignment falls
within are included. This captures dependencies from any
conditional within which the current statement may be nested; in
this case base program statement (s1):

 + (x2 -> {cond: pre.last_cond_checked |
 cond.stmt = s1})

Finally, when an assignment statement is nested within a
conditional statement, dependencies from the source variables
participating in the conditional must be included:

 + (x2 -> State.
 {cond: pre.last_cond_checked,
 infl: cond.influenced_by
 [cond.stmt.source] | cond.stmt = s1}
)
) && post.prev_state = pre
) ||

The transition predicate concludes with the Stop statement (s3).
Since execution terminates when this point is reached there is no
need to assign values for the resultant (i.e., post) state, other than
setting the previous state for tracing continuity:

(pre.stmt = s3
 && post.prev_state = pre
)}

5. Examples of DM Analysis
This section presents three examples of overt flaw and covert
channel vulnerabilities, discoverable using the DM approach. In
each case, a rule for discovering the potential flaw or covert
channel is defined as an Alloy assertion, and an example base
program is presented to illustrate the problem. Each example
shows the transmission of one bit of information; a more complex
example would need to involve such concepts as looping,
synchronization, etc., to provide the covert channels with a stream
of bits.

The complete Alloy models for these and other examples can be
found on our website at http://cisr.nps.edu/projects/sdm.html.

5.1 Overt Flaw (Example 1)
The first example illustrates an overt flaw based on a control flow
dependency. This example shows an exploitation scenario that
culminates with an IML Write_dev operation, where the
variables written to the external device have been influenced by
values at a higher level than that of the device itself.

The Alloy predicate below examines each execution state, and
evaluates as true whenever the state (current) is the result of a
Write_dev statement, and the value to be written out was
influenced_by some previous state (pre) that had access to a
variable with a higher access_label than that of current
state, i.e., the flow from the previous State to the current State is
from High to Low.

pred dependency_flaw_found [current: State]{
 let stm = current.stmt,
 pre = current.influenced_by[stm.source]|
 (stm.type = Write_dev &&
 ((pre.access_label [pre.stmt.source])
 -> stm.subject_label) in Dominates.ord
) }

The following base program illustrates an example of this flaw.
Initially, a High value is read into variable x1 (s1). Based on the
value of x1 (s2), new variable x2 is assigned either ‘0’ (s3), or ‘1’
(s4). Variable x2 is then written to a Low device (s5).

The violation occurs when x2 is written to a Low device, because
its value has been potentially influenced by a High value,
specifically x1 when it was accessed in (s2).
(s1) Read_dev (High, x1);
(s2) if x1 = 0 then
(s3) x2:= 0;
(s4) else x2:= 1;
(s5) Write_dev (Low, x2);
(s6) Stop;

The Alloy Analyzer detects this situation, and correctly reports an
overt flaw by tracing the control flow through statements
(s1)(s2)(s3)(s5).

5.2 Storage Covert Channel (Example 2)
The second scenario describes a classic covert storage channel
[23] resulting from access to the direct file by a Low subject
(using a PutDirectFile operation) after a High subject has
caused it to become full (represented by a successful
PutDirectFile that consumed the last open key slot). The
security predicate below defines this vulnerability by checking for
states where a PutDirectFile is being attempted into a full
direct file by a subject whose security level (subject_label)
is dominated by that of the most recent subject to store a value to
the direct file (last_written):
pred storage_channel_found [current: State]{
 let stm = current.stmt | {
 stm.type = PutDirectFile &&
 current.direct_file.full = const1 &&
 ((current.direct_file.last_written)
 -> stm.subject_label) in Dominates.ord
} }

The following example base program illustrates a direct file
storage channel. For the example, we assume a direct file with a
capacity of two records, initially empty. The first part of the
program shows events that occur representing a covert channel
sender. A High value is first read into variable x1 (s1). Based on
a check of the value of x1 (s2), constant value ‘2’ with a High
access label is stored into the direct file at key slot 1 (s3), and then
constant ‘0’ with a High access label is stored into the direct file at

key slot 2 (s4); these statements result in the internal full flag
being set.

(s1) Read_dev (High, x1);
(s2) if x1 = 1 then {
(s3) PutDirectFile (High, 1, 2);
(s4) PutDirectFile (High, 2, 0); }

The latter part of the program represents statements executed by a
Low covert channel receiver. When the Low subject attempts to
store a value into direct file key slot 3 (s5), the system issues a
failure indication since the direct file is full. The IML abstracts
this system failure by allowing direct examination of the system
full flag by the Low subject (s6). To exploit the storage channel,
Low writes a constant ‘1’ or a ‘0’ to an external device (s7 & s8),
depending on the result.

(s5) PutDirectFile (Low, 3, 1);
(s6) if full = 1 then
(s7) Write_dev (Low, 1);
(s8) else Write_dev (Low, 0);
(s9) Stop;

The nexus of this covert channel is that High can write to the
internal resource full (indirectly), and Low can observe it.
Because a higher labeled subject caused the direct file to become
full, the Alloy Analyzer detects and reports this violation, tracing
the flow of execution through statements (s1)(s2)(s3)(s4)(s5).

5.3 Timing Covert Channel (Example 3)
The third scenario describes a covert timing channel that occurs
when a Low subject executes two GetClock statements (gc1 &
gc2), and between them a High subject prevents the Low subject
from executing, through execution of a Read_dev/Write_dev or
direct file operation (rw state in the text). Thus, when the Low
subject next runs, it can examine the clock to detect this
interference with its access to the CPU; these channels are thus
often called CPU channels. The Alloy assertion below will detect
this potential covert timing channel, which utilizes the system
Clock.

pred timing_channel_found [gc2: State]{
 some disj rw, gc1: State | {
 gc2 -> rw in State_order.st_after &&
 rw -> gc1 in State_order.st_after &&
 gc1.stmt.type = GetClock &&
 gc2.stmt.type = GetClock &&
 rw.stmt.type in
 (Read_dev + Write_dev +
 PutDirectFile + GetDirectFile) &&
 gc1.stmt.subject_label =
 gc2.stmt.subject_label &&
 (rw.stmt.subject_label
 -> gc2.stmt.subject_label)
 in Dominates.ord }

}

The base program below illustrates this timing channel. A High
value is initially read into variable x1 (s1). A Low subject then
stores the current clock value in t1 (s2). Based on a check of x1
(s3), its value is stored into the direct file at key slot 1 (s4). The
Low subject again examines the clock, and stores its value into t2
(s5).

(s1) Read_dev (High, x1);
(s2) GetClock (Low, t1);
(s3) if x1 < 0 then
(s4) PutDirectFile (High, 1, x1);
(s5) GetClock(Low, t2);

At this point a timing channel has occurred, and the Alloy
Analyzer detects the violation, tracing execution flow through
statements (s1)(s2)(s3)(s4)(s5). The crux of this covert channel is
that a Low subject, the covert channel receiver, has been allowed
to observe (by examining the clock) a change in some internal
resource (the CPU busy state), which was indirectly affected by
the actions of a High subject, the covert channel sender. The
remaining statements illustrate how the Low subject compares the
two clock values (s6) to see whether the High subject has
interfered with it through performance of some operation, and
writes either a ‘1’ or ‘0’ accordingly (s7 & s8).

(s6) if t1 Before t2 then
(s7) Write_dev (Low, 1);
(s8) else Write_dev (Low, 0);
(s9) Stop;

6. Testing Results
The base program examples presented above were evaluated using
Alloy Analyzer 4.0 build RC17, running under Mac OS X™
10.5.1 on a 2.4 GHz Intel Core 2 Duo processor, with 2 GB of
memory. In test runs, the Alloy Analyzer successfully found valid
counterexamples for violations of each security rule assertion, i.e.,
an existing overt flaw or covert channel was detected in each case.
Test run times, in ms, were as follows; total time (time to generate
model, time to find counterexample):

• Example 1 (scope = 7): 688 (640, 48)
• Example 2 (scope = 10): 2284 (1953, 331)
• Example 3 (scope = 10): 5891 (2771, 3120)

7. Related Work
Previous research in modeling secure information flow and access
control, and in covert channel analysis is described below. We
have extended previous work by integrating a language for
formally specifying an implementation with a framework for
expressing security policies, particularly with respect to covert
channel rules and control dependency flaws.

Classic work on secure information flow [8][9] provides a
foundation for this research, including the notion of partial
ordering of security classes based on the dominance relationship,
the idea of labeling state variables to track such flows, as a way to
certify a program.

Other approaches do not distinguish between classes of covert
channels, or between covert and overt flows for that matter.
These approaches rely on the concept of noninterference, which
states that the actions of one subject can have no effect on the
output of a lower subject in a system. Goguen & Meseguer [14]
described a model wherein security policies are defined in terms
of only noninterference assertions, rather than by the combination
of access control and covert channel restrictions. Their ideas were
further expanded by Haigh & Young [15]. Noninterference with
respect to security properties, however, is considered to be limited
by the refinement paradox, i.e., a system’s abstract security
properties for information flow cannot be guaranteed to be

preserved through refinement to concrete implementation
[24][29][25].

Graham-Cumming & Sanders [12] used the unwinding theorem
[13][15] to describe refinement of a system such that
noninterference between users in an abstract specification of the
system could be preserved through more concrete representations
of the system, however the results of this work were limited to
noninterference, and were not extensible to more general security
policies or confidentiality rules, such as those for covert channels.
Enforcement of a range of security properties is possible in our
approach through the use of security assertions that are explicitly
checked during Alloy program analysis. The semantics of
information flow are represented in the DM by the definition of
access label ordering, and through the compiler-generated
transition predicate, unique to a particular base program.

Volpano et al [40] furthered the language-based flow analysis
work by defining a linguistic type system for secure flow, and
rigorously proving the soundness of the core language with
respect to noninterference. Well-typed programs are then
guaranteed to be noninterfering – and thus secure by this
definition – which was the basis for much related research,
summarized by Sabelfeld & Myers in their survey on language-
based information flow systems [30].

Other work in using sound type systems for secure information
flow has focused on areas such as: encryption and decryption of
information, where flows from plaintext (High) information to
ciphertext (Low) information must be addressed in light of
noninterference rules that would seem to prevent such interaction
[21][35]; probabilistic noninterference, where probability
distributions are used to determine a likelihood of noninterference
from High to Low variables, primarily for multi-threaded
processes where scheduling is nondeterministic [39][31][36]; and
type inference, in which the flow of information is automatically
determined based on semantic analysis [34][7]. Eventually, Smith
& Thober [37] enhanced the linguistic model of secure
information flow such that sensitivity labels need be assigned only
at I/O boundaries, while the labels of variables and constants, as
well as data information flow through a program’s execution, are
automatically derived relative to the I/O (device) labels.

Our DM-Compiler similarly tracks the flow of data based on the
input device label with no requirement to annotate the code in any
other way. Our work differs from the linguistic type system
approach in that, rather than constructing a type-safe language
with which to write secure programs, we apply abstract
interpretation to the analysis of programs in order to detect
potential problems and otherwise demonstrate their security with
respect to select security properties. Our approach is based on
exhaustive information flow tracing of all execution paths in a
program, to a certain length (determined by the model scope of
Alloy). This tracing is applied for both overt and covert channel
static analysis, using dynamic slicing techniques where
appropriate such that read-up, as well as violations of
noninterference, are detected [41]. Additionally, we provide a
compiler to generate a formal specification of a program.
Although it yet lacks a formal soundness proof, the DM-Compiler
enables generation of formal logic that can be automatically
analyzed (using the DM) for secure information flows.

Other covert channel research has also focused on information
flow analysis, using the principles of Kemmerer’s SRM [17]. For

example, in one approach, covert channel analysis is based on
observing the change in entropy, or uncertainty, of process
variables that occurs when covert channels exist [10]. The
concept of “network” covert channel analysis introduced detection
methods based on in-depth IP packet analysis as a way to
differentiate covert channels from legitimate network traffic
[28][3]. Approaches such as these could potentially be
incorporated into the DM security rule assertions, as methods for
detecting covert channels in base programs within this domain.

Previous work in implementing dynamic slicing algorithms has
included development of a tool for finding privacy violations in
networked environments, targeting spyware in networked
applications [19]. The approach uses dynamic slicing techniques
to trace program execution, to search for data dependencies that
might illuminate privacy violations. When such dependencies are
found, they are specified using an event description language to
capture event parameters, values, etc. Their goal is to use these
parameterized events as abstract inputs for an event sequence
language, as a means of generating a security policy. Based on
the observed privacy violations, a policy is written that will
prevent the specific events that caused the violations. Our
suggested approach differs in its goal of analyzing a target
program for adherence to a specific policy, as opposed to some
generated policy.

The Alloy language has been used to model security requirements
for secure communications [4], where predicates were specified
for secure message confidentiality, integrity, authenticity and non-
repudiation, as well as numerous “obstacles to security”, e.g.,
eavesdropping or spoofing. The work was successful in designing
a general, reusable model for communication security properties,
and differs significantly from our research presented here, which
examines program implementations for security.

8. Discussion and Future Work
This paper has presented ongoing research to develop a formal
domain model for analyzing programs for exploitable covert
channel vulnerabilities. The approach defines a formal Security
Domain Model (DM) that facilitates detection of covert channels,
independent of program implementation. This approach can also
be defined to specify security policies in a generic way, beyond
covert channels [33]. Although encoding and checking static
program semantics and properties is not in itself revolutionary,
this work is evolutionary in extending previous work in the area of
information flow tracking based on a precise, formal definition for
overt information flaws and covert channels. Our model provides
a means of conducting automated static analysis of a program
implementation within a finite scope of execution paths. Flow
control dependencies and related overt flaws are analyzed using
dynamic slicing techniques. This paper has shown the feasibility
of this approach on a specific set of examples for which the Alloy
Analyzer, within a finite scope, ensures that false negatives and
false positives are eliminated.

Because the scope of analysis is directly related to the size of the
base program being analyzed, a key problem with this approach
lies in the limitation on the size of the possible search space due to
the potential for state explosion in the analyzer tool. Extension of
the analyzer tool could expand the scope, and enable analysis of
larger programs.

Future work will focus on formally analyzing the semantics of the
IML and DM-Compiler to ensure that the artifacts of each (e.g.,

the base program and DM Implementation Model) are accurate
refinements of the original target implementation. As pointed out
in [30], information flow analysis should take place “as close to
the executed code as possible.” Analysis of a compiled
abstraction of the execution code creates a requirement for
trustworthiness in the compiler, as well as in the process of
deriving an abstraction of the target code itself.

The DM can be expanded to enable the notion of parameterized
security policies, i.e., the security rules defined by a policy would
become part of the DM Implementation Model (as opposed to the
current Invariant Model). This would enable an evaluator to
analyze a base program for consistency with a variety of security
policies, the policies themselves being input parameters to the
DM, as is done in a separation kernel [27]. Banking provides an
example of this concept, where there is a need to maintain secrecy
of data during execution of some applications (e.g. programs that
manipulate customer personal data), while a need exists to
maintain integrity in others (e.g. programs that execute money
transactions). A DM with parameterized policies could analyze
either of these categories of programs for adherence to the
appropriate policy to be enforced. Additionally, the DM could be
extended to provide generalization of security rule predicates,
enabling detection of additional covert channels without the need
for modification of the Invariant Model.

Another advance could be expansion of the DM to enable support
for dynamic security policies [23]. This concept would allow the
DM to support multiple polices in existence during program
execution, with the ability of a system to adapt different policies
based on a dynamically changing security environment [26].

9. Acknowledgements
The authors are grateful for support from the Office of Naval
Research and the National Science Foundation under grant CNS-
0430566. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the ONR or the
NSF.

References
[1] The Alloy Analyzer website. (2000). Retrieved January 11,

2008, from http://alloy.mit.edu/.

[2] Bell, D., & LaPadula, L. (1973). Secure Computer Systems:
Mathematical Foundations and Model, MITRE Report. The
MITRE Corp.

[3] Cabuk, S., Brodley, C., & Shields, C. (2004). IP covert
timing channels: Design and detection. Proceedings of the
11th ACM Conference on Computer and Communications
Security (178-187). Washington DC, USA: ACM Press.

[4] Chen, C., Grisham, P., Khurshid, S., & Perry, D. (2006).
Design and validation of a general security model with the
alloy analyzer. Proceedings of the ACM SIGSOFT First
Alloy Workshop (pp. 38-47).

[5] Common Criteria for Information Technology Security
Evaluation, Part 1: Introduction and General Model, version
3.1. Document number CCMB-2006-09-001. September
2006.

[6] Department of Defense Trusted Computer Security
Evaluation Criteria, DOD 5200.28-STD, National Computer
Security Center, December 1985.

[7] Deng, Z., & Smith, G. (2006). Type inference and
informative error reporting for secure information flow.
Proceedings of the 44th ACM Southeast Conference (pp.
543-548). Melbourne, Florida.

[8] Denning, D. (1976). A lattice model of secure information
flow. Communications of the ACM, 19(5), 236-242. ACM
Press.

[9] Denning, D. E., & Denning, P. J. (1977). Certification of
programs for secure information flow. Communications of
the ACM, 20(7), 504-512. ACM Press.

[10] Gianvecchio, S., & Wang, H. (2007). Detecting covert timing
channels: An entropy-based approach. Proceedings of the
14th ACM Conference on Computer and Communications
Security (pp.307-316). Alexandria, VA, USA: ACM Press.

[11] Gligor, V. (1993). A guide to understanding covert channel
analysis of trusted systems. Technical Rep. NCSC-TG-030,
National Computer Security Center, Ft. Meade, MD, USA.

[12] Graham-Cumming, J., & Sanders, J.W. (1991). On the
refinement of non-interference. Proceedings of the Computer
Security Foundations Workshop IV (pp.35-42).

[13] Goguen, J., & Meseguer, J. (1984). Unwinding and inference
control. Proceedings of the IEEE Symposium on Security and
Privacy (pp. 75-86). IEEE Computer Society Press.

[14] Goguen, J., & Meseguer, J. (1982). Security policies and
security models. Proceedings of the IEEE Symposium on
Security and Privacy (pp. 11-20). IEEE Computer Society
Press.

[15] Haigh, J.T., & Young, W.D. (1987). Extending the
noninterference version of MLS for SAT. IEEE Transactions
on Software Engineering, SE-13(2), 141-150.

[16] Jackson, D. (2006). Software Abstractions: Logic, Language,
and Analysis. Cambridge, MA, USA, and London, England:
MIT Press.

[17] Kemmerer, R. (1983). Shared resource matrix methodology:
An approach to identifying storage and timing channels.
ACM Transactions on Computer Systems, 1(3), August 1983.
ACM Press.

[18] Korel, B., & Rilling, J. (1997). Dynamic program slicing in
understanding of program execution. Proceedings of the 5th
International Workshop on Program Comprehension (pp. 80-
90). Dearborn, MI, USA: IEEE Computer Society.

[19] Kruger, L., Wang, H., & Jha, S. (2004). Towards discovering
and containing privacy violations in software (Technical
Report No. 1515). Madison, WI, USA: University of
Wisconsin-Madison.

[20] Lampson, B. W. (1973). A note on the confinement problem.
Communications of the ACM 16(10), 613-615. ACM Press.

[21] Laud, P. (2003). Handling encryption in analyses for secure
information flow. Proceedings 12th European Symposium on
Programming, ESOP (pp. 159-173).

[22] Levin, T., & Clark, P. (2004). A note regarding covert
channels. Proceedings of the 6th Workshop on Education in
Computer Security (pp. 11-15). Monterey, CA, USA.

[23] Levin, T., Irvine, C., & Spyropoulou, E. (2006). Quality of
security service: Adaptive security. Handbook of Information
Security (H. Bidgoli, ed.), vol. 3, pp. 1016–1025, Hoboken,
NJ: John Wiley and Sons.

[24] McLean, J. (1990). Security models and information flow.
Proceedings of the IEEE Symposium on Security and Privacy
(pp. 180-189). IEEE Computer Society Press.

[25] McLean, J. (1996). A general theory of composition for a
class of "possibilistic" properties. IEEE Transactions on
Software Engineering, 22(1), 53-67. IEEE Press.

[26] National Security Agency IA Directorate. (2004). Global
Information Grid Information Assurance Reference
Capability/Technology Roadmap, Version 1.0.

[27] National Security Agency. (2007). U.S. Government
Protection Profile for Separation Kernels in Environments
Requiring High Robustness, Version 1.03.

[28] Padlipsky, M., Snow, D., & Karger, P. (1978). Limitations of
end-to-end encryption in secure computer networks. MITRE
Technical Report, MTR-3592, Vol. I, May 1978 (ESD TR
78-158, DTIC AD A059221).

[29] Roscoe, A. (1995). CSP and determinism in security
modelling. Proceedings of the IEEE Symposium on Security
and Privacy (pp. 114-127). IEEE Computer Society Press.

[30] Sabelfeld, A., & Myers. A. (2003). Language-based
information-flow security. IEEE Journal on Selected Areas
in Communications, 21(1), 5-19. IEEE Press.

[31] Sabelfeld, A., & Sands, D. (2000). Probabilistic
noninterference for multi-threaded programs. Proceedings of
the IEEE Computer Security Foundations Workshop (pp.
200-214).

[32] Schaefer, M., Gold, B., Linde, R., & Scheid, J. (1977).
Program confinement in KVM/370. Proceedings of the 1977
Annual ACM Conference (pp. 404-410). ACM Press.

[33] Shaffer, A., Auguston, M., Irvine, C. and Levin, T. (2007).
Toward a security domain model for static analysis and
verification of information systems. Proceedings of the 7th
OOPSLA Workshop on Domain-Specific Modeling (pp. 160-
171). Montreal, Canada.

[34] Simonet, V. (2003). Type inference with structural
subtyping: A faithful formalization of an efficient constraint
solver. Proceedings of the Asian Symposium on
Programming Languages and Systems (APLAS'03), vol 2895
(pp. 283-302). Beijing, China: Springer-Verlag.

[35] Smith, G., & Alpizar, R. (2006). Secure information flow
with random assignment and encryption. Proceedings of the
4th ACM Workshop on Formal Methods in Security (pp. 33-
44). ACM Press.

[36] Smith, G. (2006). Improved typings for probabilistic
noninterference in a multi-threaded language. Journal of
Computer Security 14(6), 591-623.

[37] Smith, S., & Thober, M. (2007). Improving usability of
information flow security in java. Proceedings of the 2007
Workshop on Programming Languages and Analysis for
Security (pp. 11-20). ACM Press, New York, NY.

[38] Tsai, C., Gligor, V., & Chandersekaran, C. (1990). On the
identification of covert storage channels in secure systems.
IEEE Transactions on Software Engineering, 16(6), 569-580.
IEEE Press.

[39] Volpano, D., & Smith, G. (1999). Probabilistic
noninterference in a concurrent language. Journal of
Computer Security 7(2,3), 231–253.

[40] Volpano, D., Smith, G., & Irvine, C. (1996). A sound type
system for secure flow analysis. Journal of Computer
Security, 4(3), 167-187.

[41] von Oheimb, D. (2004). Information flow control revisited:
Noninfluence = noninterference + nonleakage. Proceedings
of the 9th European Symposium on Research Computer
Security (pp. 225-243). Sophia Antipolis, France.

